Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.
نویسندگان
چکیده
Composite scaffolds consisting of polymers reinforced with ceramic nanoparticles are widely applied for hard tissue engineering. However, due to the incompatible polarity of ceramic nanoparticles with polymers, they tend to agglomerate in the polymer matrix which results in undesirable effects on the integral properties of composites. In this research, forsterite (Mg2SiO4) nanoparticles was surface esterified by dodecyl alcohol and nanofibrous poly(ε-caprolactone)(PCL)/modified forsterite scaffolds were developed through electrospinning technique. The aim of this research was to investigate the properties of surface modified forsterite nanopowder and PCL/modified forsterite scaffolds, before and after hydrolytic treatment, as well as the cellular attachment and proliferation. Results demonstrated that surface modification of nanoparticles significantly enhanced the tensile strength and toughness of scaffolds upon 1.5- and 4-folds compared to unmodified samples, respectively, due to improved compatibility between matrix and filler. Hydrolytic treatment of scaffolds also modified the bioactivity and cellular attachment and proliferation due to greatly enhanced hydrophilicity of the forsterite nanoparticles after this process compared to surface modified samples. Results suggested that surface modification of forsterite nanopowder and hydrolytic treatment of the developed scaffolds were effective approaches to address the issues in the formation of composite fibers and resulted in development of bioactive composite scaffolds with ideal mechanical and structural properties for bone tissue engineering applications.
منابع مشابه
Fabrication of Poly(ε-Caprolactone), Hydrophilic and β-Tricalcium Phosphate Layer- by -Layer Nanofibrous Scaffolds for Tissue Engineering
In this study, using biodegradable polymers, nanofiberouse scaffolds were fabricated from the layer-by-layer electrospinning method, including two layer that poly (ε-caprolactone), polyvinylpyrrolidone deposited at first layer and poly (ε-caprolactone), polyvinyl alcohol , β-tricalcium phosphate at latter. After prepration of scaffolds, scanning electron microscopy (SEM), swelling, porosity, me...
متن کاملPreparation and Characterization of Aligned and Random Nanofibrous Nanocomposite Scaffolds of Poly (Vinyl Alcohol), Poly (e-Caprolactone) and Nanohydroxyapatite
Nanofibrous scaffolds produced by electrospinning have attracted much attention, recently. Aligned and random nanofibrous scaffolds of poly (vinyl alcohol) (PVA), poly (ε-caprolactone) (PCL) and nanohydroxyapatite (nHA) were fabricated by electrospinning method in this study. The composite nanofibrous scaffolds were subjected to detailed analysis. Morphological investigations revealed that the...
متن کامل3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering
The hydrophilic, conducting, biocompatible and porous scaffolds were designed using poly(2-hydroxy ethyl methacrylate)-co-poly(N-isopropylacrylamide)-co-poly(ε-caprolactone) (P(HEMA-b-NIPAAm-b-CL))/polyaniline (PANI) for the osteoblast applications. To this end, the PHEMA and P(HEMA-b-NIPAAm) were synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization, and in ...
متن کاملNano-Graphene Oxide Functionalized Bioactive Poly(lactic acid) and Poly(ε-caprolactone) Nanofibrous Scaffolds
A versatile and convenient way to produce bioactive poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) electrospun nanofibrous scaffolds is described. PLA and PCL are extensively used as biocompatible scaffold materials for tissue engineering. Here, biobased nano graphene oxide dots (nGO) are incorporated in PLA or PCL electrospun scaffolds during the electrospinning process aiming to enhan...
متن کاملThe Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold
Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Materials science & engineering. C, Materials for biological applications
دوره 33 8 شماره
صفحات -
تاریخ انتشار 2013